Receiver array design for sonothrombolysis treatment monitoring in deep vein thrombosis

Phys Med Biol. 2018 Nov 28;63(23):235017. doi: 10.1088/1361-6560/aaee91.

Abstract

High intensity focused ultrasound (HIFU) can disintegrate blood clots through the generation and stimulation of bubble clouds within thrombi. This work examined the design of a device to image bubble clouds for monitoring cavitation-based HIFU treatments of deep vein thrombosis (DVT). Acoustic propagation simulations were carried out on multi-layered models of the human thigh using two patient data sets from the Visible Human Project. The design considerations included the number of receivers (32, 64, 128, 256, and 512), their spatial positioning, and the effective angular array aperture (100° and 180° about geometric focus). Imaging array performance was evaluated for source frequencies of 250, 750, and 1500 kHz. Receiver sizes were fixed relative to the wavelength (pistons, diameter = λ/2) and noise was added at levels that scaled with receiver area. With a 100° angular aperture the long axis size of the -3 dB main lobe was ~1.2λ-i.e. on the order of the vessel diameter at 250 kHz (~7 mm). Increasing the array aperture to span 180° about the geometric focus reduced the long axis by a factor of ~2. The smaller main lobe sizes achieved by imaging at higher frequencies came at the cost of increased levels of sensitivity to phase aberrations induced during acoustic propagation through the intervening soft tissue layers. With noise added to receiver signals, images could be reconstructed with peak sidelobe ratios < -3 dB using single-cycle integration times for source frequencies of 250 and 750 kHz (NRx ⩾ 128). At 1500 kHz, longer integration times and/or higher element counts were required to achieve similar peak sidelobe ratios. Our results suggest that a modest number of receivers(i.e. NRx = 128) arranged on a semi-cylindrical shell may be sufficient to enable passive acoustic imaging with single-cycle integration times (i.e. volumetric rates up to 0.75 MHz) for monitoring cavitation-based HIFU treatments of DVT.

MeSH terms

  • Computer Simulation
  • High-Intensity Focused Ultrasound Ablation / instrumentation
  • High-Intensity Focused Ultrasound Ablation / methods*
  • Humans
  • Venous Thrombosis / therapy*