Brain-wide Organization of Neuronal Activity and Convergent Sensorimotor Transformations in Larval Zebrafish

Neuron. 2018 Nov 21;100(4):876-890.e5. doi: 10.1016/j.neuron.2018.09.042. Epub 2018 Oct 25.

Abstract

Simultaneous recordings of large populations of neurons in behaving animals allow detailed observation of high-dimensional, complex brain activity. However, experimental approaches often focus on singular behavioral paradigms or brain areas. Here, we recorded whole-brain neuronal activity of larval zebrafish presented with a battery of visual stimuli while recording fictive motor output. We identified neurons tuned to each stimulus type and motor output and discovered groups of neurons in the anterior hindbrain that respond to different stimuli eliciting similar behavioral responses. These convergent sensorimotor representations were only weakly correlated to instantaneous motor activity, suggesting that they critically inform, but do not directly generate, behavioral choices. To catalog brain-wide activity beyond explicit sensorimotor processing, we developed an unsupervised clustering technique that organizes neurons into functional groups. These analyses enabled a broad overview of the functional organization of the brain and revealed numerous brain nuclei whose neurons exhibit concerted activity patterns.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Genetically Modified
  • Brain / cytology
  • Brain / physiology*
  • Brain Chemistry / physiology*
  • Larva / chemistry
  • Larva / cytology
  • Larva / physiology*
  • Motor Activity / physiology
  • Neurons / chemistry
  • Neurons / physiology*
  • Optogenetics / methods
  • Photic Stimulation / methods
  • Psychomotor Performance / physiology*
  • Zebrafish