Broadband zero backward scattering by all-dielectric core-shell nanoparticles

Opt Express. 2018 Oct 29;26(22):28891-28901. doi: 10.1364/OE.26.028891.

Abstract

Efficiently controlling the direction of optical radiation at nanoscale dimensions is essential for various nanophotonics applications. All-dielectric nanoparticles can be used to engineer the direction of scattered light via overlapping of electric and magnetic resonance modes. Herein, we propose all-dielectric core-shell SiO2-Ge-SiO2 nanoparticles that can simultaneously achieve broadband zero backward scattering and enhanced forward scattering. Introducing higher-order electric and magnetic resonance modes satisfies the generalized first Kerker condition for breaking through the dipole approximation. Zero backward scattering occurs near the electric and magnetic resonant regions, this directional scattering is therefore efficient. Adjusting the nanoparticles' geometric parameters can shift the spectral position of the broadband zero backward scattering to the visible and near-infrared regions. The wavelength width of the zero backward scattering could be enlarged as high as 142 and 63 nm in the visible and near-infrared region. Due to these unique optical features the proposed core-shell nanoparticles are promising candidates for the design of high-performance nanoantennas, low-loss metamaterials, and photovoltaic devices.