Tunable single-mode lasing in a single semiconductor microrod

Opt Express. 2018 Nov 12;26(23):30021-30029. doi: 10.1364/OE.26.030021.

Abstract

Developing micro/nanoscale wire lasers with single-mode operation and lasing wavelength modulation is essential for realizing their practical applications such as optical communication and saturated spectroscopy. We demonstrated, to the best of our knowledge, the first tunable single-mode microrod laser without complicated micro/nano-manipulation and without additional environmental requirement. In this letter, we realized the wavelength modulation in a single semiconductor microrod simply and directly by changing the axial location of the active region, owing that the active region position plays a key role in determining the lasing mode of microrod lasers. Based on this feature, we proposed a pair of asymmetrical distributed Bragg reflectors (DBRs) with specific spectral selectivity to be induced in a GaN microrod to realize tunable single-mode lasing in a single semiconductor microrod. By using this method, lasing wavelength can be modulated from 369.5 to 375.7 nm flexibly and repeatedly in a 45 μm GaN microrod with the change of the excitation source position. This approach demonstrates a big application potential in numerous fields consisting of optical telecommunication and environmental monitoring.