Arming oncolytic reovirus with GM-CSF gene to enhance immunity

Cancer Gene Ther. 2019 Sep;26(9-10):268-281. doi: 10.1038/s41417-018-0063-9. Epub 2018 Nov 23.

Abstract

Oncolytic reovirus administration has been well tolerated by cancer patients in clinical trials. However, its anti-cancer efficacy as a monotherapy remains to be augmented. We and others have previously demonstrated the feasibility of producing replication-competent reoviruses expressing a heterologous transgene. Here, we describe the production of recombinant reoviruses expressing murine (mm) or human (hs) GM-CSF (rS1-mmGMCSF and rS1-hsGMCSF, respectively). The viruses could be propagated up to 10 passages while deletion mutants occurred only occasionally. In infected cell cultures, the secretion of GM-CSF protein (up to 481 ng/106 cells per day) was demonstrated by ELISA. The secreted mmGM-CSF protein was functional in cell culture, as demonstrated by the capacity to stimulate the survival and proliferation of the GM-CSF-dependent dendritic cell (DC) line D1, and by its ability to generate DCs from murine bone marrow cells. Importantly, in a murine model of pancreatic cancer we found a systemic increase in DC and T-cell activation upon intratumoral administration of rS1-mmGMCSF. These data demonstrate that reoviruses expressing functional GM-CSF can be generated and have the potential to enhance anti-tumor immune responses. The GM-CSF reoviruses represent a promising new agent for use in oncolytic virotherapy strategies.

MeSH terms

  • Animals
  • Cell Line
  • Dendritic Cells / immunology
  • Dendritic Cells / metabolism
  • Disease Models, Animal
  • Gene Expression
  • Gene Order
  • Genetic Engineering
  • Genetic Therapy
  • Genetic Vectors / administration & dosage
  • Genetic Vectors / genetics*
  • Granulocyte-Macrophage Colony-Stimulating Factor / genetics*
  • Humans
  • Immunity / genetics*
  • Immunomodulation / genetics*
  • Immunotherapy / methods
  • Mice
  • Oncolytic Virotherapy
  • Oncolytic Viruses / genetics*
  • Orthoreovirus, Mammalian / genetics*
  • Pancreatic Neoplasms / genetics
  • Pancreatic Neoplasms / immunology
  • Pancreatic Neoplasms / pathology
  • Pancreatic Neoplasms / therapy
  • Transgenes

Substances

  • Granulocyte-Macrophage Colony-Stimulating Factor