A robotic microsurgical forceps for transoral laser microsurgery

Int J Comput Assist Radiol Surg. 2019 Feb;14(2):321-333. doi: 10.1007/s11548-018-1887-3. Epub 2018 Nov 21.

Abstract

Purpose: In transoral laser microsurgery (TLM), the close curved cylindrical structure of the laryngeal region offers functional challenges to surgeons who operate on its malignancies with rigid, single degree-of-freedom (DOF) forceps. These challenges include surgeon hand tremors, poor reachability, poor tissue surface perception, and reduced ergonomy in design. The integrated robotic microsurgical forceps presented here is capable of addressing the above challenges through tele-operated tissue manipulation in TLM.

Methods: The proposed device is designed in compliance with the spatial constraints in TLM. It incorporates a novel 2-DOF motorized microsurgical forceps end-effector, which is integrated with a commercial 6-DOF serial robotic manipulator. The integrated device is tele-operated through the haptic master interface, Omega.7. The device is augmented with a force sensor to measure tissue gripping force. The device is called RMF-2F, i.e. robotic microsurgical forceps with 2-DOF end-effector and force sensing. RMF-2F is evaluated through validation trials and pick-n-place experiments with subjects. Furthermore, the device is trialled with expert surgeons through preliminary tasks in a simulated surgical scenario.

Results: RMF-2F shows a motion tracking error of less than 400 μm. User trials demonstrate the device's accuracy in task completion and ease of manoeuvrability using the Omega.7 through improved trajectory following and execution times. The tissue gripping force shows better regulation with haptic feedback (1.624 N) than without haptic feedback (2.116 N). Surgeons positively evaluated the device with appreciation for improved access in the larynx and gripping force feedback.

Conclusions: RMF-2F offers an ergonomic and intuitive interface for intraoperative tissue manipulation in TLM. The device performance, usability, and haptic feedback capability were positively evaluated by users as well as expert surgeons. RMF-2F introduces the benefits of robotic teleoperation including, (i) overcoming hand tremors and wrist excursions, (ii) improved reachability and accuracy, and (iii) tissue gripping feedback for safe tissue manipulation.

Keywords: Minimally invasive surgery; Robot-assisted microsurgical forceps; Robotic medical instruments; Robotic teleoperation; Tissue gripping haptic feedback; Transoral laser microsurgery.

MeSH terms

  • Equipment Design
  • Ergonomics
  • Hand Strength
  • Humans
  • Laryngeal Neoplasms / surgery
  • Laser Therapy / instrumentation*
  • Microsurgery / instrumentation*
  • Robotic Surgical Procedures / instrumentation*
  • Surgical Instruments