Data exploration on diet, and composition, energy value and functional division of prey items ingested by White Storks Ciconia ciconia in south-western Poland: Dietary variation due to land cover, reproductive output and colonial breeding

Data Brief. 2018 Oct 24:21:1186-1203. doi: 10.1016/j.dib.2018.10.064. eCollection 2018 Dec.

Abstract

The dataset presented in this data paper supports "Linking land cover satellite data with dietary variation and reproductive output in an opportunistic forager: Arable land use can boost an ontogenetic trophic bottleneck in the White Stork Ciconia ciconia" (Orłowski et al. 2019) [1]. Analysis of data on diet and prey composition based on an investigation of 165 pellets of White Storks Ciconia ciconia sampled from 52 nests showed that their diet was based primarily on 'eurytopic prey' (embracing taxa from grassland and a variety of non-cropped habitats), the biomass contribution of which in the diet was disproportionately (3-4-fold) higher than the percentage of available corresponding habitats. Similarly, prey items from water/wetland sites prevailed over the availability of corresponding habitats. The opposite pattern characterized prey taxa from arable habitats and forests, the contribution of which was lower than the availability of the corresponding habitats. The total energy content per pellet (calculated by summing the energy content of all individual prey items across one specific prey group) was the most strongly correlated with the biomass of Orthoptera, thereafter with that of mammals, other vertebrates, earthworms and other invertebrates, but not with the biomass of Coleoptera. White Storks from nests of low productivity pairs (i.e. with 1-2 fledglings) consumed a significantly (up to two-fold) higher biomass of Coleoptera, Orthoptera and all invertebrates, which also translated into a higher total biomass and a higher total energy content compared to the diet of high-productivity pairs (i.e. with 3-4 fledglings). Our data, in particular those relating to energy content in a variety of invertebrate taxa, and their body mass and functional division in terms of habitat preferences should be useful for other researchers to calculate energy budgets of predatory animals living in agricultural landscapes in Europe.