Robotics-Assisted Surgical Skills Evaluation based on Electrocortical Activity

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul:2018:3673-3676. doi: 10.1109/EMBC.2018.8513077.

Abstract

Skills assessment in Robotics-Assisted Minimally Invasive Surgery (RAMIS) is mainly performed based on temporal, motion-based and outcome-based metrics. While these components are essential for the proper assessment of skills in RAMIS, they do not suffice for full representation of all underlying aspects of skilled performance. Besides such commonplace components of skills, there exist other elements to be taken into account for comprehensive skills assessment. Among such elements are cognitive states (such as levels of stress, attention, concentration) that can directly affect performance. Investigating the impact of electrocortical activity and cognitive states of RAMIS surgeons over their performance has, however, received little attention in the literature. Therefore, in this paper, novel performance metrics based on electroencephalography (EEG) signals are studied for potential augmentation into RAMIS training and its assessment platform. For this purpose, a user study was conducted involving 23 novices and 9 expert RAMIS surgeons. The participants were asked to perform two tasks on the dv-Trainer®, (Mimic Technologies) RAMIS simulator, while their brain EEG signals were being measured using the Muse EEG headband (InteraXon Inc.). The performance metrics were defined as mean values of band powers of EEG signals over various ranges of frequency. Statistical analysis was performed to evaluate metrics over 5 different ranges of frequency for 4 electrode locations and during 2 RAMIS training tasks. The results indicated statistically significant differences in electrocortical activity between novices and experts in temporoparietal and left frontal regions of their brain for mid to high-frequency ranges. Overall, RAMIS experts showed lower levels of electrocortical activity in those regions compared to novices. The results indicate that electrocortical activity measured by EEG signals have the potential to provide useful information for skills assessment in RAMIS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Attention
  • Brain
  • Clinical Competence
  • Computer Simulation
  • Electroencephalography
  • Laparoscopy*
  • Robotic Surgical Procedures*