Amorphous Vanadium Oxide Thin Films as Stable Performing Cathodes of Lithium and Sodium-Ion Batteries

Nanoscale Res Lett. 2018 Nov 14;13(1):363. doi: 10.1186/s11671-018-2766-0.

Abstract

Herein, we report additive- and binder-free pristine amorphous vanadium oxide (a-VOx) for Li- and Na-ion battery application. Thin films of a-VOx with a thickness of about 650 nm are grown onto stainless steel substrate from crystalline V2O5 target using pulsed laser deposition (PLD) technique. Under varying oxygen partial pressure (pO2) environment of 0, 6, 13 and 30 Pa, films bear O/V atomic ratios 0.76, 2.13, 2.25 and 2.0, respectively. The films deposited at 6‑30 Pa have a more atomic percentage of V5+ than that of V4+ with a tendency of later state increased as pO2 rises. Amorphous VOx films obtained at moderate pO2 levels are found superior to other counterparts for cathode application in Li- and Na-ion batteries with reversible capacities as high as 300 and 164 mAh g-1 at 0.1 C current rate, respectively. At the end of the 100th cycle, 90% capacity retention is noticed in both cases. The observed cycling trend suggests that more is the (V5+) stoichiometric nature of a-VOx better is the electrochemistry.

Keywords: Amorphous vanadium oxide; Cathode; Li- and Na-ion batteries; PLD; Thin films.