Engineering selectivity into RGK GTPase inhibition of voltage-dependent calcium channels

Proc Natl Acad Sci U S A. 2018 Nov 20;115(47):12051-12056. doi: 10.1073/pnas.1811024115. Epub 2018 Nov 5.

Abstract

Genetically encoded inhibitors for voltage-dependent Ca2+ (CaV) channels (GECCIs) are useful research tools and potential therapeutics. Rad/Rem/Rem2/Gem (RGK) proteins are Ras-like G proteins that potently inhibit high voltage-activated (HVA) Ca2+ (CaV1/CaV2 family) channels, but their nonselectivity limits their potential applications. We hypothesized that nonselectivity of RGK inhibition derives from their binding to auxiliary CaVβ-subunits. To investigate latent CaVβ-independent components of inhibition, we coexpressed each RGK individually with CaV1 (CaV1.2/CaV1.3) or CaV2 (CaV2.1/CaV2.2) channels reconstituted in HEK293 cells with either wild-type (WT) β2a or a mutant version (β2a,TM) that does not bind RGKs. All four RGKs strongly inhibited CaV1/CaV2 channels reconstituted with WT β2a By contrast, when channels were reconstituted with β2a,TM, Rem inhibited only CaV1.2, Rad selectively inhibited CaV1.2 and CaV2.2, while Gem and Rem2 were ineffective. We generated mutant RGKs (Rem[R200A/L227A] and Rad[R208A/L235A]) unable to bind WT CaVβ, as confirmed by fluorescence resonance energy transfer. Rem[R200A/L227A] selectively blocked reconstituted CaV1.2 while Rad[R208A/L235A] inhibited CaV1.2/CaV2.2 but not CaV1.3/CaV2.1. Rem[R200A/L227A] and Rad[R208A/L235A] both suppressed endogenous CaV1.2 channels in ventricular cardiomyocytes and selectively blocked 25 and 62%, respectively, of HVA currents in somatosensory neurons of the dorsal root ganglion, corresponding to their distinctive selectivity for CaV1.2 and CaV1.2/CaV2.2 channels. Thus, we have exploited latent β-binding-independent Rem and Rad inhibition of specific CaV1/CaV2 channels to develop selective GECCIs with properties unmatched by current small-molecule CaV channel blockers.

Keywords: CaV channel; RGK GTPase; calcium channel; calcium channel gating; channel inhibition.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biophysical Phenomena
  • Calcium / metabolism
  • Calcium Channel Blockers / metabolism*
  • Calcium Channels / genetics*
  • Calcium Channels / metabolism
  • Calcium Channels, L-Type / metabolism
  • Calcium Channels, N-Type / metabolism
  • HEK293 Cells
  • Humans
  • Ion Channel Gating / physiology
  • Monomeric GTP-Binding Proteins / metabolism*
  • Myocytes, Cardiac / metabolism
  • Neurons / metabolism
  • Protein Engineering / methods
  • Substrate Specificity / genetics
  • ras Proteins / metabolism

Substances

  • Calcium Channel Blockers
  • Calcium Channels
  • Calcium Channels, L-Type
  • Calcium Channels, N-Type
  • RRAD protein, human
  • voltage-dependent calcium channel (P-Q type)
  • GEM protein, human
  • Monomeric GTP-Binding Proteins
  • REM2 protein, human
  • ras Proteins
  • Calcium