RNA Display Methods for the Discovery of Bioactive Macrocycles

Chem Rev. 2019 Sep 11;119(17):10360-10391. doi: 10.1021/acs.chemrev.8b00430. Epub 2018 Nov 5.

Abstract

The past two decades have witnessed the emergence of macrocycles, including macrocyclic peptides, as a promising yet underexploited class of de novo drug candidates. Both rational/computational design and in vitro display systems have contributed tremendously to the development of cyclic peptide binders of either traditional targets such as cell-surface receptors and enzymes or challenging targets such as protein-protein interaction surfaces. mRNA display, a key platform technology for the discovery of cyclic peptide ligands, has become one of the leading strategies that can generate natural-product-like macrocyclic peptide binders with antibody-like affinities. On the basis of the original cell-free transcription/translation system, mRNA display is highly evolvable to realize its full potential by applying genetic reprogramming and chemical/enzymatic modifications. In addition, mRNA display also allows the follow-up hit-to-lead development using high-throughput focused affinity maturation. Finally, mRNA-displayed peptides can be readily engineered to create chemical conjugates based on known small molecules or biologics. This review covers the birth and growth of mRNA display and discusses the above features of mRNA display with success stories and future perspectives and is up to date as of August 2018.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Drug Discovery / methods*
  • Drug Industry
  • Ligands
  • Peptide Library*
  • Peptides, Cyclic / chemistry*
  • RNA, Messenger / chemistry*

Substances

  • Ligands
  • Peptide Library
  • Peptides, Cyclic
  • RNA, Messenger