Green chemical method for the synthesis of chromogenic fiber and its application for the detection and extraction of Hg2+ and Cu2+ in environmental medium

J Hazard Mater. 2019 Feb 15:364:339-348. doi: 10.1016/j.jhazmat.2018.10.051. Epub 2018 Oct 21.

Abstract

To advocate environment friendly detection idea, we adopted the green chemical method to synthesis the 1-(2 amino ethyl) piperidine functionalized polyacrylonitrile fiber (APF) and the chromogenic fiber 4-(2-pyridylazo) resorcinol (APF-PAR). The APF has high adsorption selectivity of Hg2+ and Cu2+, and the change of structure, surface morphology and thermo-stability before and after adsorption have been characterized by the infrared spectra, scanning electron microscope and thermogravimetric analysis. The APF achieved the adsorption equilibrium of Hg2+ just in 25 min and the adsorption capacity is 435.1 mg/g, while the adsorption equilibrium of Cu2+ costs 30 min and the adsorption capacity is 141.7 mg/g. The chromogenic fiber APF-PAR can recognize the Hg2+ and Cu2+ in 2 s, which benefits from the rapid mass transfer and small fluid resistance of the chelating PAN fiber. The color changed from orange to purplish red due to the variation of HOMO-LOMO energy gaps during the reaction which confirmed by the UV-vis absorption spectrum. It also has high selectivity and excellent adsorption performance, which provides more convenient, accurate, reliable and faster testing methods of Hg2+ and Cu2+ in environmental medium.

Keywords: Chromogenic chelating fiber; Cu(2+); Fast detection; Green chemical; Hg(2+).

Publication types

  • Research Support, Non-U.S. Gov't