Chemomechanical Motion of a Self-Oscillating Gel in a Protic Ionic Liquid

Angew Chem Int Ed Engl. 2018 Dec 17;57(51):16693-16697. doi: 10.1002/anie.201809413. Epub 2018 Nov 20.

Abstract

An autonomous swelling-deswelling oscillation of polymer gels in a hydrated protic ionic liquid (PIL) as a proton source for the Belousov-Zhabotinsky (BZ) reaction is presented. Methylammonium hydrogen sulfate ([maH+ ][HSO4 - ]) was employed as the PIL because it provides stable redox oscillation in the BZ reaction. Due to the significantly higher pKa for [maH+ ][HSO4 - ] than those for conventional proton sources for the BZ reaction, chemomechanical oscillation can be expected under weaker acidic conditions. The self-oscillating polymer was designed as a ternary random copolymer of N-isopropylacrylamide, N-(3-aminopropyl)methacrylamide, and the Ru(bpy)3 moiety as a catalyst for the BZ reaction. The copolymer exhibited spontaneous soluble-insoluble oscillation in hydrated [maH+ ][HSO4 - ] containing NaBrO3 and malonic acid. Macroscopic swelling-deswelling oscillation of the porous bulk gel prepared by covalently connecting microgel particles was also observed.

Keywords: gels; oscillating chemical reactions; polymers; protic ionic liquids; ruthenium.