The interaction between nonstructural carbohydrate reserves and xylem hydraulics in Korean pine trees across an altitudinal gradient

Tree Physiol. 2018 Dec 1;38(12):1792-1804. doi: 10.1093/treephys/tpy119.

Abstract

Nonstructural carbohydrates (NSC) have been proposed to play an important role in maintaining the hydraulic integrity of trees, particularly in environments with high risks of embolism formation, but knowledge about the interaction between NSC reserves and xylem hydraulics is still very limited. We studied the variation of NSC reserves and hydraulic traits in Pinus koraiensis Sieb. et Zucc. (Korean pine) in March and June across a relatively large altitudinal gradient in Changbai Mountain of Northeast China. One of the major aims was to investigate the potential role NSC plays in maintaining hydraulic integrity of overwintering stems in facing freezing-induced embolism. Consistent with our hypotheses, substantial variations in both NSC contents and hydraulic traits were observed across altitudes and between the two seasons. In March, when relatively high degrees of winter embolism exist, the percentage loss of conductivity (PLC) showed an exponential increase with altitude. Most notably, positive correlations between branch and trunk soluble sugar content and PLC (P = 0.053 and 0.006) were observed across altitudes during this period. These correlations could indicate that more soluble sugars are required for maintaining stem hydraulic integrity over the winter by resisting or refilling freezing-induced embolism in harsher environments, although more work is needed to establish a direct causal relationship between NSC dynamics and xylem hydraulics. If the correlation is indeed directly associated with varying demands for maintaining hydraulic integrity across environmental gradients, greater carbon demands may compromise tree growth under conditions of higher risk of winter embolism leading to a trade-off between competitiveness and stress resistance, which may be at least partially responsible for the lower dominance of Korean pine trees at higher altitudes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Altitude
  • Carbohydrate Metabolism*
  • China
  • Hydrology
  • Pinus / metabolism*
  • Plant Stems / metabolism
  • Seasons
  • Trees / metabolism*
  • Xylem / metabolism*