Nature and strength of chalcogen-π bonds

Phys Chem Chem Phys. 2018 Nov 7;20(43):27592-27599. doi: 10.1039/c8cp05922e.

Abstract

Chalcogen-π interactions occur between a covalently bound chalcogen atom that enters into a non-covalent interaction with an unsaturated moiety, a bonding motif found in various structures, such as, proteins. In this work, we have systematically explored and analyzed chalcogen-π interactions in model systems X2DA (with D = O, S, Se, Te; X = halogen; A = acetylene, ethylene and 2-butyne), using relativistic density functional theory (DFT). The nature and trends in stability of the chalcogen-π bonds are analyzed and interpreted in terms of quantitative MO theory in combination with a matching canonical energy decomposition analysis (EDA) scheme. We find that chalcogen-π bonds increase in strength as the X-D electronegativity difference becomes greater. Moreover, 2-butyne was found to participate in the strongest non-covalent interaction due to enhanced orbital interactions.