Machine-Learning-Assisted Many-Body Entanglement Measurement

Phys Rev Lett. 2018 Oct 12;121(15):150503. doi: 10.1103/PhysRevLett.121.150503.

Abstract

Entanglement not only plays a crucial role in quantum technologies, but is key to our understanding of quantum correlations in many-body systems. However, in an experiment, the only way of measuring entanglement in a generic mixed state is through reconstructive quantum tomography, requiring an exponential number of measurements in the system size. Here, we propose a machine-learning-assisted scheme to measure the entanglement between arbitrary subsystems of size N_{A} and N_{B}, with O(N_{A}+N_{B}) measurements, and without any prior knowledge of the state. The method exploits a neural network to learn the unknown, nonlinear function relating certain measurable moments and the logarithmic negativity. Our procedure will allow entanglement measurements in a wide variety of systems, including strongly interacting many-body systems in both equilibrium and nonequilibrium regimes.