Vertical-Tunnel Field-Effect Transistor Based on a Silicon-MoS2 Three-Dimensional-Two-Dimensional Heterostructure

ACS Appl Mater Interfaces. 2018 Nov 21;10(46):40212-40218. doi: 10.1021/acsami.8b11396. Epub 2018 Nov 6.

Abstract

We present a tunneling field-effect transistor based on a vertical heterostructure of highly p-doped silicon and n-type MoS2. The resulting p-n heterojunction shows a staggered band alignment in which the quantum mechanical band-to-band tunneling probability is enhanced. The device functions in both tunneling transistor and conventional transistor modes, depending on whether the p-n junction is forward or reverse biased, and exhibits a minimum subthreshold swing of 15 mV/dec, an average of 77 mV/dec for four decades of the drain current, a high on/off current ratio of approximately 107 at a drain voltage of 1 V, and fully suppressed ambipolar behavior. Furthermore, low-temperature electrical measurements demonstrated that both trap-assisted and band-to-band tunneling contribute to the drain current. The presence of traps was attributed to defects within the interfacial oxide between silicon and MoS2.

Keywords: MoS2; heterostructure; silicon; steep-slope device; tunneling transistor.