1,2,5-Triphenylpyrrole Derivatives with Dual Intense Photoluminescence in Both Solution and the Solid State: Solvatochromism and Polymorphic Luminescence Properties

Chemistry. 2019 Jan 7;25(2):573-581. doi: 10.1002/chem.201804074. Epub 2018 Dec 13.

Abstract

Five organic luminophores, 1,2,5-triphenylpyrrole (TPP) derivatives 3 a-e bearing electron-withdrawing or electron-donating groups, have been synthesized by Pd-catalyzed Suzuki coupling of 1-phenyl-2,5-di(4'-bromophenyl)pyrrole and para-substituted phenylboronic acid derivatives. They possess good thermal stabilities with high decomposition temperatures above 310 °C. Investigation of the photophysical properties of the luminogens 3 a-e indicated that they exhibited dual intense photoluminescence in both solution and the solid state due to their twisted conformations, and their fluorescence quantum yields (ΦF ) were determined as 68.7-94.9 % in THF solution and 19.1-52.0 % in solid powder form. Compounds 3 a-c bearing electron-accepting groups exhibited remarkable solvatochromism with large Stokes shifts, attributable to their D-π-A structure and intramolecular charge-transfer effect. In particular, 3 a, bearing aldehyde groups, displayed an obvious red-shift of the emission band from 445 to 564 nm with increasing solvent polarity. However, no obvious solvatochromic behavior was observed for compounds 3 d,e bearing electron-donating groups. The luminophore 3 a exhibited polymorphic luminescence properties and crystallization-induced emission enhancement.

Keywords: conjugation; luminescence; organic electronics; photoluminescence; solvatochromism.