Altered thermoregulation as a driver of host behaviour in glochidia-parasitised fish

J Exp Biol. 2019 Jan 3;222(Pt 1):jeb184903. doi: 10.1242/jeb.184903.

Abstract

Parasites alter their host behaviour and vice versa as a result of mutual adaptations in the evolutionary arms race. One of these adaptations involves changes in host thermoregulation, which has the potential to harm the parasite and thereby act as a defence mechanism. We used a model of the brown trout (Salmo trutta) experimentally parasitised with glochidia ectoparasitic larvae from the endangered freshwater pearl mussel (Margaritifera margaritifera) to reveal whether parasitisation alters fish behavioural thermoregulation. A study using radiotelemetry temperature sensors was performed during almost one year of the M. margaritifera parasitic stage. Glochidia-infested S. trutta altered their thermoregulation through active searching for habitats with different thermal regimes. The general preference for temperatures in infested fish varied and was either above or below the temperature preferred by uninfested individuals. Infested fish also preferred different temperatures across localities, whereas uninfested fish maintained their thermal preference no matter which stream they inhabited. Glochidia further induced the expression of a behavioural syndrome among S. trutta personality traits, suggesting that it might increase the probability that the fish host would occur in the glochidia temperature optimum. Our findings present the first evidence that thermoregulation plays a fundamental role in the relationship of affiliated mussels and their fish hosts. Incorporating thermoregulation as a factor in the study of this relationship can help to interpret results from previous behavioural studies, as well as to optimise management measures related to endangered mussels.

Keywords: Behavioural fever; Freshwater pearl mussel; Host–parasite interaction; Telemetry; Thermoregulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization
  • Animals
  • Bivalvia / growth & development
  • Bivalvia / physiology*
  • Body Temperature Regulation*
  • Fish Diseases / parasitology*
  • Host-Parasite Interactions
  • Larva / growth & development
  • Larva / physiology
  • Trout*