Self-Assembly Synthesis of Silver Nanowires/Graphene Nanocomposite and Its Effects on the Performance of Electrically Conductive Adhesive

Materials (Basel). 2018 Oct 18;11(10):2028. doi: 10.3390/ma11102028.

Abstract

Among recent advances in electronic packaging technologies, electrically conductive adhesives (ECAs) attract most researchers' attention, as they are environment-friendly and simple to apply. ECAs also have a lower operating temperature and volume resistivity compared with conventional electronic conductive adhesives. In ECAs, the conducting fillers play a significant role in improving conductivity and strength. In this work, as filler additives, the silver nanowires/graphene nanocomposites (AgNWs-GNs) were successfully fabricated via a facile self-assembly method. The characteristics of the as-prepared nanocomposites were evaluated by FTIR (Fourier Transform infrared spectroscopy), XRD (X-ray Diffraction), XPS (X-ray photoelectron spectroscopy), TEM (Transmission electron microscope) and Raman tests, demonstrating a successful synthesis process. Different amounts of AgNWs-GNs were used as additives in micron flake silver filler, and the effects of AgNWs-GNs on the properties of ECAs were studied. The results suggested that the as-synthesized composites can significantly improve the electrical conductivity and shear strength of ECAs. With 0.8% AgNWs/GNs (AgNWs to GO (Graphite oxide) mass ratio is 4:1), the ECAs have the lowest volume resistivity of 9.31 × 10-5 Ω·cm (95.4% lower than the blank sample without fillers), while with 0.6% AgNWs/GNs (AgNWs to GO mass ratio is 6:1), the ECAs reach the highest shear strength of 14.3 MPa (68.2% higher than the blank sample).

Keywords: electrically conductive adhesive; graphene; silver nanowires; volume resistivity.