Cellular Automata Modeling of Ostwald Ripening and Rayleigh Instability

Materials (Basel). 2018 Oct 11;11(10):1936. doi: 10.3390/ma11101936.

Abstract

A cellular automata (CA) approach to modeling both Ostwald ripening and Rayleigh instability was developed. Curvature-driven phase interface migration was implemented to CA model, and novel CA rules were introduced to ensure the conservation of phase volume fraction of nearly equilibrium two-phase system. For transient Ostwald ripening, it is shown that the temporal growth exponent m is evolving with time and non-integer temporal exponents between 2 and 3 are predicted. The varying temporal growth exponent m is related to the particle size distributions (PSDs) evolution. With an initial wide PSD, it becomes narrowed toward steady state. With an initial narrow PSD, it becomes widened at first and then narrowed toward steady state. For Rayleigh instability, two cases (one with sinusoidal perturbation on the surface of the long cylinder, and the other with grain boundaries in the interior of the long cylinder) were simulated, and the breakup of the long cylinder was shown for both cases. In the end, a system containing long cylinders with interior grain boundaries was simulated, which demonstrated the integration of Rayleigh instability and Ostwald ripening relating to the spheroidization of the lamellar structure.

Keywords: Ostwald ripening; Rayleigh instability; cellular automata; curvature-driven.