Marginally Self-Averaging One-Dimensional Localization in Bilayer Graphene

Phys Rev Lett. 2018 Sep 28;121(13):136806. doi: 10.1103/PhysRevLett.121.136806.

Abstract

The combination of a field-tunable band gap, topological edge states, and valleys in the band structure makes insulating bilayer graphene a unique localized system, where the scaling laws of dimensionless conductance g remain largely unexplored. Here we show that the relative fluctuations in lng with the varying chemical potential, in strongly insulating bilayer graphene (BLG), decay nearly logarithmically for a channel length up to L/ξ≈20, where ξ is the localization length. This "marginal" self-averaging, and the corresponding dependence of ⟨lng⟩ on L, suggests that transport in strongly gapped BLG occurs along strictly one-dimensional channels, where ξ≈0.5±0.1 μm was found to be much longer than that expected from the bulk band gap. Our experiment reveals a nontrivial localization mechanism in gapped BLG, governed by transport along robust edge modes.