Enhanced cell dehydration tolerance and photosystem stability facilitate the occupation of cold alpine habitats by a homoploid hybrid species, Picea purpurea

AoB Plants. 2018 Sep 7;10(5):ply053. doi: 10.1093/aobpla/ply053. eCollection 2018 Oct.

Abstract

Homoploid hybrid speciation (HHS), characterized by hybrid speciation without a change in chromosome number and facilitated by ecological divergence, is well known in angiosperms but rare in gymnosperms. Picea purpurea as one of two demonstrably conifer diploid hybrid species in gymnosperms has been found to occupy colder alpine habitats than its parents. However, studies on whether leaf frost tolerance and hydraulic safety exhibit transgressive segregation and thus play a role in conifer HHS are still lacking. In this study, we compared the frost tolerance of photosystem stability (the maximum efficiency of PSII, F v/F m), pressure-volume parameters, and xylem resistance to dysfunction of leaves (current-year twigs) and stems (annual shoots) between P. purpurea and its progenitors. The results indicated that P. purpurea had significantly lower osmotic potential at full turgor, water potential at turgor loss point, water potential at 12 % loss of conductance of stem, the maximum hydraulic conductance of stem and the temperature causing a 50 % reduction in initial F v/F m than its parental species. In contrast, the leaf and stem xylem pressure inducing 50 % loss of hydraulic conductivity (leaf Ψ50 and stem Ψ50, respectively) and hydraulic safety margin in leaf Ψ50, stem Ψ50 in P. purpurea showed no significant difference with those of P. wilsonii, but significantly larger than those of P. likiangensis. This suggests that the frost tolerance of photosystem stability and the cell dehydration tolerance in P. purpurea are superior to its parental species, facilitating its successful colonization and establishment in colder habitats.

Keywords: Cell dehydration; Picea purpurea; frost tolerance; homoploid hybrid speciation; maximum photochemical efficiency of photosystem II; water relations; xylem resistance to embolism.