Hypermethylation of CCND2 in Lung and Breast Cancer Is a Potential Biomarker and Drug Target

Int J Mol Sci. 2018 Oct 10;19(10):3096. doi: 10.3390/ijms19103096.

Abstract

Lung and breast cancer are the leading causes of mortality in women worldwide. The discovery of molecular alterations that underlie these two cancers and corresponding drugs has contributed to precision medicine. We found that CCND2 is a common target in lung and breast cancer. Hypermethylation of the CCND2 gene was reported previously; however, no comprehensive study has investigated the clinical significance of CCND2 alterations and its applications and drug discovery. Genome-wide methylation and quantitative methylation-specific real-time polymerase chain reaction (PCR) showed CCND2 promoter hypermethylation in Taiwanese breast cancer patients. As compared with paired normal tissues and healthy individuals, CCND2 promoter hypermethylation was detected in 40.9% of breast tumors and 44.4% of plasma circulating cell-free DNA of patients. The western cohort of The Cancer Genome Atlas also demonstrated CCND2 promoter hypermethylation in female lung cancer, lung adenocarcinoma, and breast cancer patients and that CCND2 promoter hypermethylation is an independent poor prognostic factor. The cell model assay indicated that CCND2 expression inhibited cancer cell growth and migration ability. The demethylating agent antroquinonol D upregulated CCND2 expression, caused cell cycle arrest, and inhibited cancer cell growth and migration ability. In conclusion, hypermethylation of CCND2 is a potential diagnostic, prognostic marker and drug target, and it is induced by antroquinonol D.

Keywords: Antrodia camphorata; CCND2; antroquinonol D; circulating cell-free DNA; hypermethylation; lung adenocarcinoma; prognostic factor; triple-negative breast cancer (TNBC); tumor suppressor gene.

MeSH terms

  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • Biomarkers, Tumor
  • Breast Neoplasms / drug therapy
  • Breast Neoplasms / genetics*
  • Breast Neoplasms / mortality
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Cyclin D2 / antagonists & inhibitors
  • Cyclin D2 / genetics*
  • DNA Methylation*
  • Dose-Response Relationship, Drug
  • Gene Expression Regulation, Neoplastic / drug effects*
  • Humans
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / mortality
  • Prognosis
  • Promoter Regions, Genetic
  • Proportional Hazards Models
  • RNA, Messenger / genetics
  • Ubiquinone / analogs & derivatives

Substances

  • Antineoplastic Agents
  • Biomarkers, Tumor
  • CCND2 protein, human
  • Cyclin D2
  • RNA, Messenger
  • Ubiquinone
  • antroquinonol