Experimental Characterization of Droplet Adhesion: The Ejection Test Method (ETM) Applied to Surfaces with Various Hydrophobicity

J Phys Chem A. 2018 Nov 1;122(43):8693-8700. doi: 10.1021/acs.jpca.8b08037. Epub 2018 Oct 24.

Abstract

We study the wetting and the adhesive behavior of substrates made by electropolymerization of copolymers of pyrene substituted with fluoroalkyl and adamantyl groups. The hydrophobicity and water adhesion properties can be tuned by the molar percentage (mol %) of each pyrene monomer so that the substrate properties can vary from superhydrophobic to parahydrophobic, with respectively low and high water adhesion. The ejection test method (ETM) is proposed as an original tool to discriminate and characterize such substrates. Using a catapult-like apparatus, a droplet initially at rest on the surface is subject to a large acceleration and is subsequently ejected. Depending on the surface properties and initial catapult acceleration, the ejection is more or less efficient and occurs with or without fragmentation of the droplet. The ETM is shown to be a complementary test to the lateral adhesion and hysteresis classical measurements. This work is of importance for the understanding of adhesion phenomena on various surfaces and for a better quantitative characterization of their adhesive properties.