Maize WRKY Transcription Factor ZmWRKY106 Confers Drought and Heat Tolerance in Transgenic Plants

Int J Mol Sci. 2018 Oct 6;19(10):3046. doi: 10.3390/ijms19103046.

Abstract

WRKY transcription factors constitute one of the largest transcription factor families in plants, and play crucial roles in plant growth and development, defense regulation and stress responses. However, knowledge about this family in maize is limited. In the present study, we identified a drought-induced WRKY gene, ZmWRKY106, based on the maize drought de novo transcriptome sequencing data. ZmWRKY106 was identified as part of the WRKYII group, and a phylogenetic tree analysis showed that ZmWRKY106 was closer to OsWRKY13. The subcellular localization of ZmWRKY106 was only observed in the nucleus. The promoter region of ZmWRKY106 included the C-repeat/dehydration responsive element (DRE), low-temperature responsive element (LTR), MBS, and TCA-elements, which possibly participate in drought, cold, and salicylic acid (SA) stress responses. The expression of ZmWRKY106 was induced significantly by drought, high temperature, and exogenous abscisic acid (ABA), but was weakly induced by salt. Overexpression of ZmWRKY106 improved the tolerance to drought and heat in transgenic Arabidopsis by regulating stress-related genes through the ABA-signaling pathway, and the reactive oxygen species (ROS) content in transgenic lines was reduced by enhancing the activities of superoxide dismutase (SOD), peroxide dismutase (POD), and catalase (CAT) under drought stress. This suggested that ZmWRKY106 was involved in multiple abiotic stress response pathways and acted as a positive factor under drought and heat stress.

Keywords: WRKY; ZmWRKY106; drought tolerance; maize; thermotolerance.

MeSH terms

  • Adaptation, Biological*
  • Amino Acid Sequence
  • Arabidopsis / genetics
  • Arabidopsis / metabolism
  • Cell Nucleus / metabolism
  • Droughts*
  • Gene Expression Profiling
  • Gene Expression Regulation, Enzymologic
  • Heat-Shock Response*
  • High-Throughput Nucleotide Sequencing
  • Phenotype
  • Phylogeny
  • Plants, Genetically Modified
  • Promoter Regions, Genetic
  • Protein Transport
  • Reactive Oxygen Species / metabolism
  • Response Elements
  • Stress, Physiological
  • Transcription Factors / chemistry
  • Transcription Factors / genetics*
  • Transcription Factors / metabolism*
  • Transcriptome
  • Zea mays / classification
  • Zea mays / genetics*
  • Zea mays / metabolism*

Substances

  • Reactive Oxygen Species
  • Transcription Factors