PM2.5 source apportionment for the port city of Thessaloniki, Greece

Sci Total Environ. 2019 Feb 10;650(Pt 2):2337-2354. doi: 10.1016/j.scitotenv.2018.09.250. Epub 2018 Sep 25.

Abstract

This paper aims to identify the chemical fingerprints of potential PM2.5 sources and estimate their contribution to Thessaloniki port-city's air quality. For this scope, Positive Matrix Factorization model was applied on a comprehensive PM2.5 dataset collected over a one-year period, at two sampling sites: the port and the city center. The model indicated six and five (groups of) sources contributing to particle concentration at the two sites, respectively. Traffic and biomass burning (winter months) comprise the major local PM sources for Thessaloniki (their combined contribution can exceed 70%), revealing two of the major control-demanding problems of the city. Shipping and in-port emissions have a non-negligible impact (average contribution to PM2.5: 9-13%) on both primary and secondary particles. Road dust factor presents different profile and contribution at the two sites (19.7% at the port; 7.4% at the city center). The secondary-particle factor represents not only the aerosol transportation over relatively long distances, but also a part of traffic-related pollution (14% at the port; 34% at the city center). The study aims to contribute to the principal role of quantitative information on emission sources (source apportionment) in port-cities for the implementation of the air quality directives and guidelines for public health.

Keywords: PMF; Ship and harbor emissions; Urban sources; Wind pattern.