Copper Sulfide-Based Plasmonic Photothermal Membrane for High-Efficiency Solar Vapor Generation

ACS Appl Mater Interfaces. 2018 Oct 17;10(41):35154-35163. doi: 10.1021/acsami.8b11786. Epub 2018 Oct 2.

Abstract

Solar vapor generation has attracted tremendous attention as one of the most efficient ways of utilizing solar energy. It is highly desirable to develop low-cost, eco-friendly, and high-efficiency solar absorbers for practical applications of solar vapor generation. Herein, a three-dimensional plasmonic covellite CuS hierarchical nanostructure has been synthesized as the light-absorbing material via a facile one-pot hydrothermal method for structurally integrated solar absorbers with microporous poly(vinylidene fluoride) membrane (PVDFM) as the supporting material. A broadband and highly efficient light absorption has been achieved in the wavelength of 300-2500 nm, along with high water evaporation efficiencies of 90.4 ± 1.1 and 93.3 ± 2.0% under 1 and 4 sun irradiation, respectively. Meanwhile, stable performance has been demonstrated for over 20 consecutive runs without much performance degradation. To the best of our knowledge, this is the highest performance among the copper sulfide-based solar absorbers. With the additional features of low-cost and convenient fabrication, this plasmonic solar absorber exhibits a tremendous potential for practical solar vapor generation.

Keywords: LSPRs; hierarchical CuS; integrated structure; photothermal conversion; solar vapor generation.