Ultra-low noise microwave generation with a free-running optical frequency comb transfer oscillator

Opt Lett. 2018 Oct 1;43(19):4651-4654. doi: 10.1364/OL.43.004651.

Abstract

We present ultra-low noise microwave synthesis by optical to radio-frequency (RF) division realized with a free-running or RF-locked optical frequency comb (OFC) acting as a transfer oscillator. The method does not require any optical lock of the OFC and circumvents the need for a high-bandwidth actuator. Instead, the OFC phase noise is electrically removed from a beat-note signal with an optical reference, leading to a broadband noise division. The phase noise of the ∼15 GHz RF signal generated in this proof-of-principle demonstration is limited by a shot-noise level below -150 dBc/Hz at high Fourier frequencies and by a measurement noise floor of -60 dBc/Hz at 1 Hz offset frequency when performing 1,100 cross-correlations. The method is attractive for high-repetition-rate OFCs that lead to a lower shot-noise, but are generally more difficult to tightly lock. It may also simplify the noise evaluation by enabling the generation of two or more distinct ultra-low noise RF signals from different optical references using a single OFC and their direct comparison to assess their individual noise.