Establishing a quick screening method by using a microfluidic chip to evaluate cytotoxicity of metal contaminants

Sci Total Environ. 2019 Feb 15;651(Pt 1):1058-1066. doi: 10.1016/j.scitotenv.2018.09.217. Epub 2018 Sep 21.

Abstract

Due to rapid industrialization and urbanization, the environment is exposed to many chemicals from natural or anthropogenic sources. The contaminants impact eco-system and human health via food chain. Animals, including humans, are likely to accumulate contaminants in their bodies from direct exposure or feeding behavior, resulting in toxicity. Therefore, evaluation of the toxicity of contaminants is an important issue. Metals are highly toxic but the toxicity depends on many factors, including the valance and the complex form of metals, the organic matter level in the environment, the reducing/oxidizing condition of the environment, and etc. Since the level of metal amount does not directly correlate to bioavailability, cell culture is usually used for toxicity evaluation. In this study, a microfluidic chip was developed to evaluate the cell toxicity from exposure to metals, copper and thallium. Compared to traditional cytotoxicity assay using static state culture with tetrazolium reagent, this microfluidic chip can generate various shear stresses by changing geometry of culture areas or flow rate. Enhancement of shear stresses could increase cell sensitivity toward metal exposure. Therefore, this platform provides a more sensitive platform for quantitative analysis of cell toxicity and could be applied to evaluate toxicity from environmental samples.

Keywords: Copper; Cytotoxicity; Microfluidic chip; Shear stress; Thallium.