An all-inorganic lead halide perovskite-based photocathode for stable water reduction

Chem Commun (Camb). 2018 Oct 9;54(81):11459-11462. doi: 10.1039/c8cc06952b.

Abstract

Lead halide perovskites (LHPs) have been investigated for photoelectrochemical hydrogen generation from water splitting. However, the harsh requirements in preparing the environment, i.e. isolating water and oxygen, hinder the wide applications of lead halide perovskites. Herein, an all-inorganic perovskite, i.e. a CsPbBr3-based photocathode, has been prepared to generate hydrogen. It is notable that as a valuable trial for a potential large-scale production, the whole preparation process was completed in an open-air environment. The LHP photocathode achieved the highest photocurrent of about 1.2 mA cm-2 at 0 VRHE. And the photocurrent remains around 94% after continuous illumination for 1 h with the Faradaic efficiency of 90%, illustrating a good photoelectrochemical stability. The all-inorganic LHP photocathodes are facile to prepare with a relatively good performance, and can be improved via band engineering and structure optimization, of which large-scale applications can be expected.