LMW-PTP modulates glucose metabolism in cancer cells

Biochim Biophys Acta Gen Subj. 2018 Dec;1862(12):2533-2544. doi: 10.1016/j.bbagen.2018.08.003. Epub 2018 Aug 4.

Abstract

Background: Low Molecular Weight Phosphotyrosine Protein Phosphatase (LMW-PTP) is an enzyme involved not only in tumor onset and progression but also in type 2 diabetes. A recent review shows that LMW-PTP acts on several RTK (receptor tyrosine kinase) such as PDGFR, EGFR, EphA2, Insulin receptor. It is well described also its interaction with cSrc. It is noteworthy that most of these conclusions are based on the use of cell lines expressing low levels of LMW-PTP. The aim of the present study was to discover new LMW-PTP substrates in aggressive human tumors where the over-expression of this phosphatase is a common feature.

Methods: We investigated, by proteomic analysis, the protein phosphorylation pattern of A375 human melanoma cells silenced for LMW-PTP. Two-dimensional electrophoresis (2-DE) analysis, followed by western blot was performed using anti-phosphotyrosine antibodies, in order to identify differentially phosphorylated proteins.

Results: Proteomic analysis pointed out that most of the identified proteins belong to the glycolytic metabolism, such as α-enolase, pyruvate kinase, glyceraldehyde-3-phosphate dehydrogenase and triosephosphate isomerase, suggesting an involvement of LMW-PTP in glucose metabolism. Assessment of lactate production and oxygen consumption demonstrated that LMW-PTP silencing enhances glycolytic flux and slow down the oxidative metabolism. In particular, LMW-PTP expression affects PKM2 tyrosine-phosphorylation and nuclear localization, modulating its activity.

Conclusion: All these findings propose that tumor cells are subjected to metabolic reprogramming after LMW-PTP silencing, enhancing glycolytic flux, probably to compensate the inhibition of mitochondrial metabolism.

General significance: Our results highlight the involvement of LMW-PTP in regulating glucose metabolism in A375 melanoma cells.

Keywords: Glucose metabolism; LMW-PTP; Metabolic reprogramming of cancer cells; PKM2.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Fluorescence
  • Green Fluorescent Proteins / metabolism*
  • Humans
  • Hydrogen-Ion Concentration*
  • Molecular Weight
  • Neoplasms / metabolism*
  • Neoplasms / pathology

Substances

  • Green Fluorescent Proteins