Mode of action, toxicity, pharmacokinetics, and efficacy of some new antiherpesvirus guanosine analogs related to buciclovir

Antimicrob Agents Chemother. 1986 Oct;30(4):598-605. doi: 10.1128/AAC.30.4.598.

Abstract

9-[4-Hydroxy-3-(hydroxymethyl)butyl]guanine (3HM-HBG), (RS)-9-[4-hydroxy-2-(hydroxymethyl)butyl]guanine ([+/-]2HM-HBG), and cis-9-(4-hydroxy-2-butenyl)guanine (2EN-HBG), new acyclic guanosine analogs structurally related to buciclovir (BCV [(R)-9-(3,4-dihydroxybutyl)guanine]), were evaluated in parallel with buciclovir as anti-herpes simplex virus (HSV) agents. In cell cultures, replication of different strains of HSV type 1 (HSV-1) and HSV-2 was inhibited at nontoxic drug concentrations. The concentrations giving 50% inhibition of plaque formation were, however, dependent on virus strain and cell type. In most cell types, the order of activity against HSV-1 strains was 3HM-HBG greater than (+/-)2HM-HBG greater than BCV greater than 2EN-HBG, whereas the drugs showed an approximately equivalent activity against HSV-2 strains in different cells. The cytotoxic effects of the drugs were also cell type dependent, the order of activity being BCV greater than 3HM-HBG = (+/-)2HM-HBG greater than 2EN-HBG. At growth-inhibitory concentrations, the guanosine analogs BCV, 3HM-HBG, and (+/-)2HM-HBG showed clastogenic effects in human lymphocytes, mainly because of the induction of chromatid breaks. When evaluated for their anti-HSV effects in systemic HSV-1 infections in mice, the order of activity was BCV = 3HM-HBG greater than (+/-)2HM-HBG greater than 2EN-HBG, and in mice infected systemically with HSV-2, only BCV and 3HM-HBG showed efficacy. The differences between efficacy in vitro and in vivo could be explained in part by differences in kinetics of the drugs in mouse plasma, as the more efficacious drugs, BCV and 3HM-HBG, showed lower clearances and longer half-lives than the less efficacious ones, (+/-)2HM-HBG and 2EN-HBG. When used topically against a cutaneous HSV-1 infection in guinea pigs, 3HM-HBG showed an effect equivalent to that of BCV, whereas (+/-)2HM-HBG and 2EN-HBG were inactive. Mechanistically, the guanosine analogs were characterized by a high affinity for the viral thymidine kinase and a low affinity fo a cellular thymidine kinase and by their inhibition of viral DNA synthesis in infected cells.

MeSH terms

  • Acyclovir / analogs & derivatives
  • Acyclovir / pharmacology
  • Animals
  • Antiviral Agents* / blood
  • Antiviral Agents* / therapeutic use
  • Cell Division / drug effects
  • Cell Line
  • Chromosome Aberrations / drug effects
  • DNA, Viral / drug effects
  • Guanosine / analogs & derivatives*
  • Guanosine / blood
  • Guanosine / pharmacology
  • Herpes Simplex / drug therapy
  • Kinetics
  • Mice
  • Simplexvirus / drug effects*
  • Simplexvirus / metabolism

Substances

  • Antiviral Agents
  • DNA, Viral
  • Guanosine
  • buciclovir
  • Acyclovir