Diborene: Generation and Photoelectron Spectroscopy of an Inorganic Biradical

J Phys Chem Lett. 2018 Oct 18;9(20):5921-5925. doi: 10.1021/acs.jpclett.8b02338. Epub 2018 Sep 27.

Abstract

Diborenes, R-BB-R', are of current interest in inorganic chemistry because they offer the opportunity to tune the properties of a biradical by modifying the substituents of the diborene parent, HBBH. Here we synthesize the elusive diborene by H atom abstraction from diborane, B2H6, using fluorine atoms and report a vibrationally resolved photoelectron spectrum of the HBBH biradical. The spectrum is interpreted by comparison with high-level ab initio computations, taking into account the Renner-Teller splitting in the X+ 2Π ionic ground state, which show an excellent agreement with the experimental spectrum. An adiabatic ionization energy of 9.080 ± 0.015 eV was determined, and a vibrational progression in the boron-boron stretching vibration of 0.14 eV is visible. This is due to the reduction of bond order upon ionization, accompanied by an increase of the computed boron-boron bond length, RBB, from 1.514 to 1.606 Å.