Low-temperature nanospectroscopy of the structural ferroelectric phases in single-crystalline barium titanate

Nanoscale. 2018 Sep 27;10(37):18074-18079. doi: 10.1039/c8nr04081h.

Abstract

We optically investigate the local-scale ferroelectric domain structure of tetragonal, orthorhombic, and rhombohedral barium titanate (BTO) single crystals using scattering-type scanning near-field infrared (IR) optical microscopy (s-SNIM) at temperatures down to 150 K. Thanks to the precisely tunable narrow-band free-electron laser FELBE, we are able to explore the spectral fingerprints and IR resonances of these three phases and their domain orientations in the optical IR near-field. More clearly, every structural phase is analyzed with respect to its near-field resonances close to a wavelength of 17 μm when exploring the (111)-oriented BTO sample surface. Furthermore, near-field imaging at these resonances is performed, that clearly allows for the unambiguous optical identification of different domain orientations. Since our s-SNIM is based on a non-contact scanning force microscope, our s-SNIM findings are backed up by sample-topography and piezoresponse force microscopy (PFM) imaging, providing complementary information in an excellent match to the s-SNIM results.