A High-Throughput Luciferase Assay to Evaluate Proteolysis of the Single-Turnover Protease PCSK9

J Vis Exp. 2018 Aug 28:(138):58265. doi: 10.3791/58265.

Abstract

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a single-turnover protease which regulates serum low-density lipoprotein (LDL) levels and, consequently, cardiovascular disease. Although PCSK9 proteolysis is required for its full hypercholesterolemic effect, the evaluation of its proteolytic function is challenging: PCSK9 is only known to cleave itself, undergoes only a single turnover, and after proteolysis, retains its substrate in its active site as an auto-inhibitor. The methods presented here describe an assay which overcomes these challenges. The assay focuses on intermolecular proteolysis in a cell-based context and links successful cleavage to the secreted luciferase activity, which can be easily read out in the conditioned medium. Via sequential steps of mutagenesis, transient transfection, and a luciferase readout, the assay can probe PCSK9 proteolysis under conditions of either genetic or molecular perturbation in a high-throughput manner. This system is well suited for both the biochemical evaluation of clinically discovered missense single-nucleotide polymorphisms (SNPs), as well as for the screening of small-molecule inhibitors of PCSK9 proteolysis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Humans
  • Luciferases / genetics*
  • Proprotein Convertase 9 / metabolism*
  • Proteolysis*

Substances

  • Luciferases
  • PCSK9 protein, human
  • Proprotein Convertase 9