Metformin blocks MYC protein synthesis in colorectal cancer via mTOR-4EBP-eIF4E and MNK1-eIF4G-eIF4E signaling

Mol Oncol. 2018 Nov;12(11):1856-1870. doi: 10.1002/1878-0261.12384. Epub 2018 Oct 15.

Abstract

The antidiabetic drug metformin has been associated with reduced colorectal cancer (CRC) risk and improved prognosis of CRC patients. However, the detailed mechanisms underlying such beneficial effects remain unknown. In this study, we aimed to evaluate metformin activity in CRC models and unveil the underlying molecular mechanisms. We showed that metformin inhibits CRC cell proliferation by arresting cells in the G1 phase of the cell cycle and dramatically reduces colony formation of CRC cells. We discovered that metformin causes a robust reduction of MYC protein level. Through the use of luciferase assay and coincubation with either protein synthesis or proteasome inhibitors, we demonstrated that regulation of MYC by metformin is independent of the proteasome and 3' UTR-mediated regulation, but depends on protein synthesis. Data from polysome profiling and ribopuromycylation assays showed that metformin induced widespread inhibition of protein synthesis. Repression of protein synthesis by metformin preferentially affects cell cycle-associated proteins, by altering signaling through the mTOR-4EBP-eIF4E and MNK1-eIF4G-eIF4E axes. The inhibition of MYC protein synthesis may underlie metformin's beneficial effects on CRC risk and prognosis.

Keywords: MYC; mTOR; cell cycle; colorectal cancer; metformin; protein synthesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Colorectal Neoplasms* / drug therapy
  • Colorectal Neoplasms* / genetics
  • Colorectal Neoplasms* / metabolism
  • Eukaryotic Initiation Factor-4E / genetics
  • Eukaryotic Initiation Factor-4E / metabolism
  • Eukaryotic Initiation Factor-4G* / genetics
  • Eukaryotic Initiation Factor-4G* / metabolism
  • HCT116 Cells
  • HEK293 Cells
  • Humans
  • Intracellular Signaling Peptides and Proteins* / genetics
  • Intracellular Signaling Peptides and Proteins* / metabolism
  • Metformin / pharmacology*
  • Protein Serine-Threonine Kinases* / genetics
  • Protein Serine-Threonine Kinases* / metabolism
  • Proto-Oncogene Proteins c-myc* / biosynthesis
  • Proto-Oncogene Proteins c-myc* / genetics
  • Signal Transduction* / drug effects
  • Signal Transduction* / genetics
  • TOR Serine-Threonine Kinases* / genetics
  • TOR Serine-Threonine Kinases* / metabolism

Substances

  • EIF4E protein, human
  • EIF4G1 protein, human
  • Eukaryotic Initiation Factor-4E
  • Eukaryotic Initiation Factor-4G
  • Intracellular Signaling Peptides and Proteins
  • MYC protein, human
  • Proto-Oncogene Proteins c-myc
  • Metformin
  • MKNK1 protein, human
  • MTOR protein, human
  • Protein Serine-Threonine Kinases
  • TOR Serine-Threonine Kinases

Associated data

  • GENBANK/NM_002467.4