Graphene-based all-optical multi-parameter regulations for an ultrafast fiber laser

Opt Lett. 2018 Sep 15;43(18):4378-4381. doi: 10.1364/OL.43.004378.

Abstract

Ultrafast lasers with tunable capabilities of pulse duration and spectrum have widespread applications in telecommunication, spectroscopy, and nonlinear optical bio-imaging. However, traditional mechanical and electrical tuning methods are still challenging for precise and stable controlling. Based on graphene's photo-thermal effect, we tune the bandwidths and wavelengths of chirped fiber Bragg gratings with flexible graphene-coating approaches. By inserting the fabricated devices into an ultrafast fiber laser cavity, durations and wavelengths of the generated pulses can be all-optically tuned with sensitivities of 470 fs/mW and 2.9 pm/mW, separately. Such an optical-controlled method provides a compact and precise way to regulate various laser properties.