[Genome analysis of Acidiplasma sp. MBA-1, a polyextremophilic archaeon predominant in the microbial community of a bioleaching reactor]

Mikrobiologiia. 2017 Jan-Feb;86(1):80-7.
[Article in Chinese]

Abstract

Results of genome analysis of a member of the family Ferroplasmaceae, Acidiplasma sp. strain MBA-1, an extremely acidophilic, moderately thermophilic archaeon oxidizing ferrous iron under oxic conditions and utilizing organic compounds. This strain was previously shown to predominate in the community carrying out biooxidation of pyrite-arsenopyrite gold-bearing concentrate. The genome was sequenced using the Illumina HiSeq 2000 platform. A total of 2306800 pairwise reads were obtained, corresponding to 300-fold coverage. Assembly was carried out by three programs in parallel. The optimal assembly contained nine contigs, the genome size was 1747364 bp, and N50 was 446845 bp. Annotation of the genome revealed 1749 protein-encoding sequences, as well as 46 tRNA genes and one rRNA gene copy. The results of genome analysis confirmed the previous data on the physiology of this organism. The gene of sulfocyanin (TZ01_06185), a blue copper-containing protein playing the key role in the iron-oxidizing electron transport chain, was identified in the genome. The genes encoding sulfur oxidoreductase (TZ01_04750) and sulfateadenilyl transferase (TZ01_04545), the enzymes of sulfur oxidation, were also identified. The genes involved in the transport and catabolism of organic compounds and the genes of the 3-hydroxypropionate/4-hydroxybutyrate cycle were revealed. The genome of Acidiplasma sp. MBA-1 is the first genome of this genus deposited to a public database DDBJ/EMBL/GenBank (accession no. JYHS00000000) and is of interest for further investigation of Acidiplasma archaea.

MeSH terms

  • Archaeal Proteins / genetics*
  • Euryarchaeota / genetics*
  • Genome, Archaeal*
  • Microbial Consortia*
  • Molecular Sequence Annotation
  • RNA, Archaeal / genetics*

Substances

  • Archaeal Proteins
  • RNA, Archaeal