Normal force distribution and posture of a hand pressing on a flat surface

J Biomech. 2018 Oct 5:79:164-172. doi: 10.1016/j.jbiomech.2018.08.002. Epub 2018 Aug 15.

Abstract

Hand strength data are needed to understand and predict hand postures and finger loads while placing the hand on an object or surface. This study aims to analyze the effect of hand posture and surface orientation on hand force while pressing a flat surface. Twelve participants, 6 females and 6 males ages 19-25, performed three exertions (100%, 30% and 10% MVC- Maximum Voluntary Contraction) perpendicular to a plate in 4 angles (-45°, 0°, 45° and 90° with respect to the horizontal plane) at elbow height. Exertions involved pushing in two postures: (1) whole hand and (2) constrained to only using the fingertips. Inter-digit joint angles were recorded to map hand and finger motions and estimate joint moments for each condition. Participants exerted twice the force when pushing with whole hand vs. fingertips. 72-75% of the total force was exerted over the base of the palm, while only 11-13% with the thumb for exertions at 90°, 45° or 0° plate angles. Males maximum force for pushing at 0°, 45° and 90° plates averaged 49% higher than females for the whole hand and 62% for the fingertips (p < 0.01). There was no significant sex difference (p > 0.05) for the -45° plate. Thumb joint loads were generally higher than the other individual fingers (p < 0.05) in all % MVC and accounted for 12% of total force during whole hand exertions. On average, joint moments were 30% higher during fingertip conditions vs. whole hand. Thumb and finger joint moment magnitudes when pushing the plate at 100% MVC indicated that Metacarpophalangeal (MCP) joint moments were higher (p < 0.05) than Distal Interphalangeal joints (DIP) and Proximal Interphalangeal joints (PIP) under whole hand and fingertips conditions.

Keywords: Hand posture; Hand-force distribution, finger force; One-hand push; Push.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Biomechanical Phenomena
  • Female
  • Hand / physiology*
  • Humans
  • Male
  • Mechanical Phenomena*
  • Posture*
  • Surface Properties
  • Young Adult