Chemical Interaction-Induced Evolution of Phase Compatibilization in Blends of Poly(hydroxy ether of bisphenol-A)/Poly(1,4-butylene terephthalate)

Materials (Basel). 2018 Sep 9;11(9):1667. doi: 10.3390/ma11091667.

Abstract

An immiscible blend of poly(hydroxy ether of bisphenol-A) (phenoxy) and poly(1,4-butylene terephthalate) (PBT) with phase separation was observed in as-blended samples. The compatibilization of phenoxy/PBT blends can be promoted through chemical exchange reactions of phenoxy with PBT upon annealing. The annealed phenoxy/PBT blends had a homogeneous phase with a single Tg that could be enhanced by annealing at 260 °C. Infrared (IR) spectroscopy demonstrated that phase homogenization could be promoted by annealing the phenoxy/PBT blend, where alcoholytic exchange occurred between the dangling hydroxyl group (⁻OH) in phenoxy and the carbonyl group (C=O) in PBT in the heated blends. The alcoholysis reaction changed the aromatic linkages to aliphatic linkages in the carbonyl groups, which initially led to the formation of a graft copolymer of phenoxy and PBT with an aliphatic/aliphatic carbonyl link. The progressive alcoholysis reaction resulted in the transformation of the initial homopolymers into block copolymers and finally into random copolymers, which promoted phase compatibilization in blends of phenoxy with PBT. As the amount of copolymers increased upon annealing, the crystallization of PBT was inhibited by alcoholytic exchange in the blends.

Keywords: alcoholysis; compatibilization; copolymers; homogeneous phase; immiscible blend.