[Effects of Straw and Biochar Addition on Soil Carbon Balance and Ecological Benefits in a Rape-maize Rotation Planting System]

Huan Jing Ke Xue. 2018 Sep 8;39(9):4338-4347. doi: 10.13227/j.hjkx.201712051.
[Article in Chinese]

Abstract

The effects of different straw and biochar applications on the carbon balance of a farmland ecosystem were studied under a rape-maize rotation planting system. The study explored impact of straw and biochar addition on soil carbon sequestration. A field experiment was carried out at the National Monitor Station of Soil Fertility and Fertilizer Efficiency of Purple Soils (Chongqing, China). Five treatments, i.e., control (CK, no organic material), straw only (CS), straw and microorganism (CSD), half straw and half biochar (CSBC), and biochar only (BC), were applied. In-situ cumulative emissions of soil total carbon were subsequently monitored. Based on field experiment and survey data, carbon emissions, carbon sequestration, and and economic and environmental benefits were analyzed for soil respiration, soil carbon pool, crop carbon pool, as well as the cost of agricultural inputs after straw and biochar application. The main results were:①Accumulative emissions of soil carbon during two planting seasons were all higher with treatment than in CK, and the differences between CS, CSD, and CK were significant (P<0.05). ②Compared with CK, both straw and biochar treatments increased crop yield (by 1.49%-3.92%) and crop net primary productivity (NPP) increased by 4.44%-17.90%. Largest yields and NPP during both seasons were achieved with CSD.③Net carbon sequestration was positive during both seasons in all treatments without CK, indicating a carbon sink effect. The highest net carbon sequestration was obtained with CSD (9.05 t·hm-2) and BC (10.75 t·hm-2) treatments. The lowest carbon emissions were obtained with the BC treatment, with emissions 62.69%-81.86% lower than CK. ④The highest production to cost ratio was obtained with CS treatments during the rape planting season. Application of only biochar reduced the production to cost ratio but increased the carbon trading income (466.95-561.22 yuan·hm-2).⑤BC treatment increased carbon productivity (CP) in both seasons, while the economic (CJ) and ecological benefits(CE) of BC treatment were significantly lower than with other treatments. The addition of straw increases economic and ecological benefits; however, addition of biochar reduces such benefits.

Keywords: biochar; carbon balance; carbon benefit; purple soil; straw.

MeSH terms

  • Agriculture / methods*
  • Brassica rapa / growth & development*
  • Carbon / analysis*
  • Charcoal*
  • China
  • Fertilizers
  • Plant Stems
  • Soil / chemistry*
  • Zea mays / growth & development*

Substances

  • Fertilizers
  • Soil
  • biochar
  • Charcoal
  • Carbon