Polyunsaturated Fatty Acids Induce ROS Synthesis in Microvascular Endothelial Cells

Adv Exp Med Biol. 2018:1072:393-397. doi: 10.1007/978-3-319-91287-5_63.

Abstract

In sepsis, endothelial dysfunction is a crucial driver known to limit the survival rate of affected patients. For this, ROS-mediated signaling plays an important role in endothelial communication and functionality. In the management of sepsis, polyunsaturated fatty acids (PUFA) have received increasing attention regarding their anti-inflammatory potential neglecting the oxidative properties of these substances. Therefore, in the present study we examined the capacity of PUFA to interfere with the expression of major ROS-producing enzymes, as well as endothelial ROS production itself. The human microvascular endothelial cells TIME (ATCC number: CRL-4025) were used. Cells were cultured in medium enriched with LNA (C18:3n3), EPA (C20:5n3), DHA (C22:6n3), LA (C18:2n6), or AA (C20:4n6) in concentrations of 15 μM totaling 144 h. Stimulation of cells was performed in the last 24 h of fatty acid supplementation by addition of the cytokines TNF-α + IL-1β + IFN-γ (5 ng/ml each). Gene expression of eNOS, COX-2, and NOX-4 was evaluated by qPCR. ROS synthesis was analyzed by means of a flow cytometry-based rhodamine 123 assay. Cytokine stimulation was found to differentially affect gene expression of major ROS synthesizing enzymes: eNOS was decreased whereas COX-2 and NOX-4 were increased. As a consequence, cytokine stimulation had no effect on rhodamine accumulation in endothelial cells. PUFA supplementation alone did not affect the gene expression of eNOS, COX-2, and NOX-4. Nevertheless, an increasing action of PUFA on the stimulation-induced reduction in eNOS expression was found. More importantly, the number of rhodamine positive endothelial cells almost doubled following enrichment with the PUFA EPA, DHA or AA. This effect was independent of the stimulation status of the cells but seemed to be related to the number of double bonds of a supplemented fatty acid. Our data warrant further studies to ensure that increased endothelial cell oxidative stress is not boosted by PUFA in septic patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line
  • Endothelial Cells / metabolism*
  • Fatty Acids, Unsaturated / pharmacology*
  • Humans
  • Microvessels / metabolism
  • Oxidative Stress / physiology*
  • Reactive Oxygen Species / metabolism*

Substances

  • Fatty Acids, Unsaturated
  • Reactive Oxygen Species