Using Phylogenetic Analysis to Investigate Eukaryotic Gene Origin

J Vis Exp. 2018 Aug 14:(138):56684. doi: 10.3791/56684.

Abstract

Phylogenetic analysis uses nucleotide or amino acid sequences or other parameters, such as domain sequences and three-dimensional structure, to construct a tree to show the evolutionary relationship among different taxa (classification units) at the molecular level. Phylogenetic analysis can also be used to investigate domain relationships within an individual taxon, particularly for organisms that have undergone substantial change in morphology and physiology, but for which researchers lack fossil evidence due to the organisms' long evolutionary history or scarcity of fossilization. In this text, a detailed protocol is described for using the phylogenetic method, including amino acid sequence alignment using Clustal Omega, and subsequent phylogenetic tree construction using both Maximum Likelihood (ML) of Molecular Evolutionary Genetics Analysis (MEGA) and Bayesian Inference via MrBayes. To investigate the origin of eukaryotic Sugars Will Eventually be Exported Transporters (SWEET) genes, 228 SWEETs including 35 SWEET proteins from unicellular eukaryotes and 57 SemiSWEET proteins from prokaryotes were analyzed. Interestingly, SemiSWEETs were found in prokaryotes, but SWEETs were found in eukaryotes. Two phylogenetic trees constructed using theoretically distinct methods have consistently suggested that the first eukaryotic SWEET gene might stem from the fusion of a bacterial SemiSWEET gene and an archaeal SemiSWEET gene. It is worth noting that one should be cautious to draw a conclusion based only on phylogenetic analysis, although it is useful to explain the underlying relationship between different taxa, which is difficult or even impossible to discern through experimental means.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Amino Acid Sequence
  • Eukaryota / chemistry*
  • Membrane Transport Proteins / genetics*
  • Phylogeny*

Substances

  • Membrane Transport Proteins