Probing the binding mechanism of substituted pyridine derivatives as effective and selective lysine-specific demethylase 1 inhibitors using 3D-QSAR, molecular docking and molecular dynamics simulations

J Biomol Struct Dyn. 2019 Aug;37(13):3482-3495. doi: 10.1080/07391102.2018.1518158. Epub 2018 Dec 5.

Abstract

Lysine-specific demethylase 1 (LSD1) was regarded as a promising anticancer target for the novel drug discovery. In this work, we carried out a molecular modeling study on the substituted pyridine derivatives as LSD1 inhibitors using three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations. Molecular docking studies predicted the probable binding mode of ligands, and suggested Lys661 and Asp555 might be key residues. Our 3D-QSAR models exhibited satisfactory internal and external predicted capacity. For the comparative molecular field analysis (CoMFA) model, its training set had q2 of 0.595 and r2 of 0.959, while test set had q2 of 0.512 and r2 of 0.846. For the best comparative molecular similarity indices analysis (CoMSIA) model, its training set had q2 of 0.733 and r2 of 0.982, while test set had q2 of 0.695 and r2 of 0.922. MD simulations result revealed the detailed binding process and found an important conserved water-bridge motif between ligands and protein. The binding free energies calculation using Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) approach coincided well with the experimental bioactivity and demonstrated that the electrostatic interaction was the major driving force for binding. The energy decomposition pointed out some significant residues (Asp555, Lys661, Trp695, Tyr761 and FAD) for the LSD1 potency increase. Based on these results, five new inhibitors were designed, and their activities were predicted using our 3D-QSAR models. Communicated by Ramaswamy H. Sarma.

Keywords: 3D-QSAR; LSD1; molecular docking; molecular dynamics simulations; substituted pyridine derivatives.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites
  • Drug Discovery
  • Enzyme Inhibitors / chemistry*
  • Enzyme Inhibitors / metabolism*
  • Histone Demethylases / chemistry*
  • Histone Demethylases / metabolism*
  • Humans
  • Ligands
  • Models, Molecular
  • Molecular Docking Simulation*
  • Molecular Dynamics Simulation*
  • Molecular Structure
  • Protein Binding
  • Protein Conformation
  • Pyridines / chemistry*
  • Quantitative Structure-Activity Relationship

Substances

  • Enzyme Inhibitors
  • Ligands
  • Pyridines
  • Histone Demethylases
  • KDM1A protein, human