Adenosine diphosphate-sensitive P2Y11 receptor inhibits endothelial cell proliferation by induction of cell cycle arrest in the S phase and induces the expression of inflammatory mediators

J Cell Biochem. 2019 Feb;120(2):1783-1793. doi: 10.1002/jcb.27482. Epub 2018 Aug 24.

Abstract

Extracellular adenosine diphosphate (ADP) mediates a wide range of physiological effects as an extracellular signaling molecule, including platelet aggregation, vascular tone, cell proliferation, and apoptosis by interacting with plasma membrane P2 receptors. However, the effect of ADP on cell proliferation was contradictory. In this study, we found that ADP significantly inhibited cell proliferation of human umbilical vein endothelial cells at high concentrations (50 to 100 µM). Treatment with ADP did not induce cell apoptosis but instead induced cell cycle arrest in the S phase, which may be partly due to the downregulation of cyclin B1. The inhibition of cell proliferation was blocked by suramin, a nonspecific antagonist of the P2 receptors, and high concentrations of ADP significantly upregulated the messenger RNA (mRNA) and protein expression of P2Y11 in endothelial cells. Moreover, the downregulation of P2Y11 by RNA interference reversed the inhibition of cell proliferation. In addition, ADP (100 µM) can induce the formation of cytosolic autophagy in endothelial cells and a rapid phosphorylation of extracellular signal regulated kinase (ERK) 1/2, which is a canonical signal molecule downstream of P2Y receptors, accompanied by a mRNA expression of proinflammatory cytokines such as intercellular adhesion molecule 1 and vascular cell adhesion molecule 1. Taken together, our study excludes a mechanism for extracellular ADP impairing endothelial cells proliferation via P2Y11 receptor by downregulating cyclin B1 and arresting cell cycle at the S phase, besides, ADP induces cell autophagy and mRNA expression of inflammatory cytokines, whether it is mediated by Erk signaling pathways needs further studies to confirm.

Keywords: P2Y11 receptor; autophagy; cell cycle; endothelial cells; inflammation; proliferation.