Cement-Based Materials Containing Graphene Oxide and Polyvinyl Alcohol Fiber: Mechanical Properties, Durability, and Microstructure

Nanomaterials (Basel). 2018 Aug 21;8(9):638. doi: 10.3390/nano8090638.

Abstract

The influence of graphene oxide (GO) and polyvinyl alcohol (PVA) fiber on the mechanical performance, durability, and microstructure of cement-based materials was investigated in this study. The results revealed that compared with a control sample, the mechanical strength and durability of cement-based materials were significantly improved by adding PVA fiber and GO. The compressive and flexural strength at 28 d were increased by 30.2% and 39.3%, respectively. The chloride migration coefficient at 28 d was reduced from 7.3 × 10-12 m²/s to 4.3 × 10-12 m²/s. Under a sulfate corrosion condition for 135 d, the compressive and flexural strength still showed a 13.9% and 12.3% gain, respectively. Furthermore, from the Mercury Intrusion Porosimetry (MIP) test, with the incorporation of GO, the cumulative porosity decreased from more than 0.13 cm³/g to about 0.03 cm³/g, and the proportion of large capillary pores reduced from around 80% to 30% and that of medium capillary pores increased from approximately 20% to 50%. Scanning electron microscope (SEM) images showed a significant amount of hydration products adhering to the surface of PVA fiber in the GO and PVA fiber modified sample. The addition of GO coupling with PVA fiber in cement-based materials could promote hydration of cement, refine the microstructure, and significantly improve mechanical strength and durability.

Keywords: PVA fiber; cement-based materials; durability; graphene oxide; mechanical strength; microstructure.