Optoelectronic Properties in Near-Infrared Colloidal Heterostructured Pyramidal "Giant" Core/Shell Quantum Dots

Adv Sci (Weinh). 2018 Jul 3;5(8):1800656. doi: 10.1002/advs.201800656. eCollection 2018 Aug.

Abstract

Colloidal heterostructured quantum dots (QDs) are promising candidates for next-generation optoelectronic devices. In particular, "giant" core/shell QDs (g-QDs) can be engineered to exhibit outstanding optical properties and high chemical/photostability for the fabrication of high-performance optoelectronic devices. Here, the synthesis of heterostructured CuInSe x S2-x (CISeS)/CdSeS/CdS g-QDs with pyramidal shape by using a facile two-step method is reported. The CdSeS/CdS shell is demonstrated to have a pure zinc blend phase other than typical wurtzite phase. The as-obtained heterostructured g-QDs exhibit near-infrared photoluminescence (PL) emission (≈830 nm) and very long PL lifetime (in the microsecond range). The pyramidal g-QDs exhibit a quasi-type II band structure with spatial separation of electron-hole wave function, suggesting an efficient exciton extraction and transport, which is consistent with theoretical calculations. These heterostructured g-QDs are used as light harvesters to fabricate a photoelectrochemical cell, exhibiting a saturated photocurrent density as high as ≈5.5 mA cm-2 and good stability under 1 sun illumination (AM 1.5 G, 100 mW cm-2). These results are an important step toward using heterostructured pyramidal g-QDs for prospective applications in solar technologies.

Keywords: near‐infrared emission; photoelectrochemical cells; pyramidal structures; quantum dots.