Functional Task and Balance Performance in Bed Rest Subjects and Astronauts

Aerosp Med Hum Perform. 2018 Sep 1;89(9):805-815. doi: 10.3357/AMHP.5039.2018.

Abstract

Introduction: The purpose of this study was to determine how short- and long-duration spaceflight affects astronauts' performance on functional tests that challenge the balance control system (Seated Egress and Walk; Object Translation; Recovery from Fall/Stand; and Jump Down) and on clinical tests of balance function (Computerized Dynamic Posturography and Tandem Walk). In addition, we examined how exercise affects functional performance after long-term axial body unloading during 70 d of bed rest at 6° head-down tilt.

Methods: Data were collected twice during the 2-mo period before spaceflight or during the 2-wk period before bed rest, and four times after flight or bed rest: on the day of landing or the day bed rest ended, 1 d and 6 d later, and a final session 12 d after bed rest or 30 d after spaceflight.

Results: For bed rest subjects, long-term axial unloading alone caused functional performance deficits immediately after bed rest. However, the addition of an exercise regimen did not significantly improve median functional performance immediately after this axial unloading. For spaceflight subjects, the length of the space mission was directly related to the severity of functional performance deficits within 1 d of landing and during the subsequent recovery period after flight.

Discussion: The performance data suggest that an additional sensorimotor-based countermeasure may be necessary to maintain functional performance at preflight levels immediately after spaceflight.Miller CA, Kofman IS, Brady RR, May-Phillips TR, Batson CD, Lawrence EL, Taylor LC, Peters BT, Mulavara AP, Feiveson AH, Reschke MF, Bloomberg JJ. Functional task and balance performance in bed rest subjects and astronauts. Aerosp Med Hum Perform. 2018; 89(9):805-815.

MeSH terms

  • Adult
  • Aerospace Medicine
  • Astronauts / statistics & numerical data*
  • Bed Rest*
  • Female
  • Humans
  • Male
  • Middle Aged
  • Postural Balance / physiology*
  • Space Flight*
  • Task Performance and Analysis