Optimization-free approach for generating sub-diffraction quasi-non-diffracting beams

Opt Express. 2018 Jun 25;26(13):16585-16599. doi: 10.1364/OE.26.016585.

Abstract

Sub-diffraction quasi-non-diffracting beams with sub-wavelength transverse size are attractive for applications such as optical nano-manipulation, optical nano-fabrication, optical high-density storage, and optical super-resolution microscopy. In this paper, we proposed an optimization-free design approach and demonstrated the possibility of generating sub-diffraction quasi-non-diffracting beams with sub-wavelength size for different polarizations by a binary-phase Fresnel planar lens. More importantly, the optimization-free method significantly simplifies the design procedure and the generation of sub-diffracting quasi-non-diffracting beams. Utilizing the concept of normalized angular spectrum compression, for wavelength λ0 = 632.8 nm, a binary-phase Fresnel planar lens was designed and fabricated. The experimental results show that the sub-diffraction transverse size and the non-diffracting propagation distances are 0.40λ0-0.54λ0 and 90λ0, 0.43λ0-0.54λ0 and 73λ0, and 0.34λ0-0.41λ0 and 80λ0 for the generated quasi-non-diffracting beams with circular, longitudinal, and azimuthal polarizations, respectively.